The Magnetic

Vector Potential

From the magnetic form of Gauss's Law $\nabla \cdot \mathbf{B}(\bar{r})=0$, it is evident that the magnetic flux density $B(\bar{r})$ is a solenoidal vector field.

Recall that a solenoidal field is the curl of some other vector field, e.g.,:

$$
\mathbf{B}(\bar{r})=\nabla \times \mathbf{A}(\bar{r})
$$

Q: The magnetic flux density $\mathrm{B}(\overline{\mathrm{r}})$ is the curl of what vector field??

A: The magnetic vector potential $\mathbf{A}(\bar{r})$!

The curl of the magnetic vector potential $A(\bar{r})$ is equal to the magnetic flux density $B(\bar{r})$:

$$
\nabla \times A(\bar{r})=B(\bar{r})
$$

where:

$$
\text { magnetic vector potential } \doteq \boldsymbol{A}(\bar{r}) \quad\left[\frac{\text { Webers }}{\text { meter }}\right]
$$

Vector field $\boldsymbol{A}(\bar{r})$ is called the magnetic vector potential because of its analogous function to the electric scalar potential $V(\bar{r})$.

An electric field can be determined by taking the gradient of the electric potential, just as the magnetic flux density can be determined by taking the curl of the magnetic potential:

$$
E(\bar{r})=-\nabla V(\bar{r}) \quad B(\bar{r})=\nabla \times A(\bar{r})
$$

Yikes! We have a big problem!

There are actually (infinitely) many vector fields $A(\bar{r})$ whose curl will equal an arbitrary magnetic flux density $B(\bar{r})$. In other words, given some vector field $B(\bar{r})$, the solution $A(\bar{r})$ to the differential equation $\nabla \times \mathbf{A}(\bar{r})=\mathbf{B}(\bar{r})$ is not unique !

But of course, we knew this!
To completely (i.e., uniquely) specify a vector field, we need to specify both its divergence and its curl.

Well, we know the curl of the magnetic vector potential $\boldsymbol{A}(\bar{r})$ is equal to magnetic flux density $B(\bar{r})$. But, what is the divergence of $A(\bar{r})$ equal to? I.E.,:

$$
\nabla \cdot A(\bar{r})=? ? ?
$$

By answering this question, we are essentially defining $A(\bar{r})$.
\longrightarrow Let's define it in so that it makes our computations easier!

To accomplish this, we first start by writing Ampere's Law in terms of magnetic vector potential:

$$
\nabla \times \mathbf{B}(\bar{r})=\nabla \times \nabla \times \mathbf{A}(\bar{r})=\mu_{0} \boldsymbol{J}(\bar{r})
$$

We recall from section 2-6 that:

$$
\nabla \times \nabla \times \mathbf{A}(\bar{r})=\nabla(\nabla \cdot \mathbf{A}(\bar{r}))-\nabla^{2} \mathbf{A}(\bar{r})
$$

Thus, we can simplify this statement if we decide that the divergence of the magnetic vector potential is equal to zero:

$$
\nabla \cdot A(\bar{r})=0
$$

We call this the gauge equation for magnetic vector potential. Note the magnetic vector potential $\boldsymbol{A}(\bar{r})$ is therefore also a solenoidal vector field.

As a result of this gauge equation, we find:

$$
\begin{aligned}
\nabla \times \nabla \times \mathbf{A}(\bar{r}) & =\nabla(\nabla \cdot \mathbf{A}(\bar{r}))-\nabla^{2} \mathbf{A}(\bar{r}) \\
& =-\nabla^{2} \mathbf{A}(\bar{r})
\end{aligned}
$$

And thus Ampere's Law becomes:

$$
\nabla \times \mathbf{B}(\bar{r})=-\nabla^{2} \boldsymbol{A}(\bar{r})=\mu_{0} \mathbf{J}(\bar{r})
$$

Note the Laplacian operator ∇^{2} is the vector Laplacian, as it operates on vector field $\boldsymbol{A}(\bar{r})$.

Summarizing, we find the magnetostatic equations in terms of magnetic vector potential $A(\bar{r})$ are:

$$
\begin{aligned}
& \nabla \times \mathbf{A}(\overline{\mathbf{r}})=\mathbf{B}(\overline{\mathbf{r}}) \\
& \nabla^{2} \mathbf{A}(\overline{\mathbf{r}})=-\mu_{0} \mathbf{J}(\overline{\mathbf{r}}) \\
& \nabla \cdot \mathbf{A}(\overline{\mathbf{r}})=0
\end{aligned}
$$

Note that the magnetic form of Gauss's equation results in the equation $\nabla \cdot \nabla \times \mathbf{A}(\bar{r})=0$. Why don't we include this equation in the above list?

Compare the magnetostatic equations using the magnetic vector potential $\boldsymbol{A}(\bar{r})$ to the electrostatic equations using the electric scalar potential $V(\bar{r})$:

$$
\begin{aligned}
& -\nabla V(\bar{r})=\mathbf{E}(\bar{r}) \\
& \nabla^{2} V(\bar{r})=-\frac{\rho_{v}(\bar{r})}{\varepsilon_{0}}
\end{aligned}
$$

Hopefully, you see that the two potentials $\mathbf{A}(\bar{r})$ and $V(\bar{r})$ are in many ways analogous.

For example, we know that we can determine a static field $\mathbf{E}(\bar{r})$ created by sources $\rho_{r}(\bar{r})$ either directly (from Coulomb's Law), or indirectly by first finding potential $V(\bar{r})$ and then taking its derivative (i.e., $\mathrm{E}(\overline{\mathrm{r}})=-\nabla V(\bar{r})$).

Likewise, the magnetostatic equations above say that we can determine a static field $B(\bar{r})$ created by sources $J(\bar{r})$ either directly, or indirectly by first finding potential $\boldsymbol{A}(\bar{r})$ and then taking its derivative (i.e., $\nabla \times \mathbf{A}(\bar{r})=\mathbf{B}(\bar{r})$).

$$
\begin{aligned}
\rho_{\nu}(\bar{r}) & \Rightarrow V(\bar{r}) \Rightarrow \mathrm{E}(\bar{r}) \\
\mathrm{J}(\bar{r}) & \Rightarrow \mathrm{A}(\bar{r}) \Rightarrow \mathrm{B}(\bar{r})
\end{aligned}
$$

