<u>The Magnetic</u> <u>Vector Potential</u>

From the magnetic form of Gauss's Law $\nabla \cdot \mathbf{B}(\overline{r}) = 0$, it is evident that the magnetic flux density $\mathbf{B}(\overline{r})$ is a solenoidal vector field.

Recall that a solenoidal field is the **curl** of some other vector field, e.g.,:

$$B(\overline{r}) = \nabla x A(\overline{r})$$

Q: The magnetic flux density $\mathbf{B}(\overline{\mathbf{r}})$ is the curl of what vector field ??

A: The magnetic vector potential $A(\bar{r})!$

The curl of the magnetic vector potential $\mathbf{A}(\overline{\mathbf{r}})$ is equal to the magnetic flux density $\mathbf{B}(\overline{\mathbf{r}})$:

$$\nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}}) = \mathbf{B}(\overline{\mathbf{r}})$$

where:

magnetic vector potential $\doteq \mathbf{A}(\overline{\mathbf{r}})$

Vector field $\mathbf{A}(\overline{\mathbf{r}})$ is called the **magnetic** vector potential because of its **analogous** function to the **electric** scalar potential $V(\overline{\mathbf{r}})$.

An electric field can be determined by taking the gradient of the electric potential, just as the magnetic flux density can be determined by taking the curl of the magnetic potential:

$$\mathbf{E}(\overline{\mathbf{r}}) = -\nabla \, \mathbf{V}(\overline{\mathbf{r}}) \qquad \qquad \mathbf{B}(\overline{\mathbf{r}}) = \nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}})$$

Yikes! We have a big problem!

There are actually (infinitely) many vector fields $\mathbf{A}(\overline{\mathbf{r}})$ whose curl will equal an arbitrary magnetic flux density $\mathbf{B}(\overline{\mathbf{r}})$. In other words, given some vector field $\mathbf{B}(\overline{\mathbf{r}})$, the solution $\mathbf{A}(\overline{\mathbf{r}})$ to the differential equation $\nabla \times \mathbf{A}(\overline{\mathbf{r}}) = \mathbf{B}(\overline{\mathbf{r}})$ is not unique !

But of course, we knew this!

To **completely** (i.e., uniquely) specify a **vector** field, we need to specify **both** its divergence and its curl.

Well, we know the **curl** of the magnetic vector potential $\mathbf{A}(\overline{\mathbf{r}})$ is equal to magnetic flux density $\mathbf{B}(\overline{\mathbf{r}})$. But, what is the **divergence** of $\mathbf{A}(\overline{\mathbf{r}})$ equal to ? I.E.,:

$$\nabla \cdot \mathbf{A}(\overline{\mathbf{r}}) = ???$$

By answering this question, we are essentially **defining** $A(\overline{r})$.

Let's define it in so that it makes our **computations** easier!

To accomplish this, we first start by writing **Ampere's Law** in terms of magnetic vector potential:

$$\nabla \mathbf{x} \mathbf{B}(\overline{\mathbf{r}}) = \nabla \mathbf{x} \nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}}) = \mu_0 \mathbf{J}(\overline{\mathbf{r}})$$

We recall from **section 2-6** that:

$$abla imes
abla \nabla imes \nabla imes \mathbf{A}(\overline{\mathbf{r}}) =
abla (\nabla \cdot \mathbf{A}(\overline{\mathbf{r}})) -
abla^2 \mathbf{A}(\overline{\mathbf{r}})$$

Thus, we can **simplify** this statement if we decide that the **divergence** of the magnetic vector potential is **equal to zero**:

$$\nabla \cdot \boldsymbol{A}(\overline{\boldsymbol{r}}) = \boldsymbol{0}$$

We call this the **gauge equation** for magnetic vector potential. Note the magnetic vector potential $\mathbf{A}(\overline{r})$ is therefore **also** a **solenoidal** vector field.

$$\nabla \mathbf{x} \nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}}) = \nabla \left(\nabla \cdot \mathbf{A}(\overline{\mathbf{r}}) \right) - \nabla^2 \mathbf{A}(\overline{\mathbf{r}})$$
$$= -\nabla^2 \mathbf{A}(\overline{\mathbf{r}})$$

And thus Ampere's Law becomes:

$$\nabla \mathbf{x} \mathbf{B}(\overline{\mathbf{r}}) = -\nabla^{2} \mathbf{A}(\overline{\mathbf{r}}) = \mu_{0} \mathbf{J}(\overline{\mathbf{r}})$$

Note the Laplacian operator ∇^2 is the vector Laplacian, as it operates on vector field $\mathbf{A}(\overline{r})$.

Summarizing, we find the magnetostatic equations in terms of magnetic vector potential $A(\overline{r})$ are:

$$\nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}}) = \mathbf{B}(\overline{\mathbf{r}})$$
$$\nabla^2 \mathbf{A}(\overline{\mathbf{r}}) = -\mu_0 \mathbf{J}(\overline{\mathbf{r}})$$
$$\nabla \cdot \mathbf{A}(\overline{\mathbf{r}}) = \mathbf{0}$$

Note that the **magnetic** form of Gauss's equation results in the equation $\nabla \cdot \nabla x \mathbf{A}(\mathbf{r}) = 0$. Why don't we include this equation in the above list?

Compare the magnetostatic equations using the magnetic vector potential $\mathbf{A}(\mathbf{\bar{r}})$ to the electrostatic equations using the electric scalar potential $V(\bar{r})$:

$$-\nabla V(\bar{r}) = \mathbf{E}(\bar{\mathbf{r}})$$

$$\nabla^2 \mathcal{V}(\bar{\mathcal{F}}) = -\frac{\rho_v(\bar{\mathbf{r}})}{\varepsilon_0}$$

Hopefully, you see that the two potentials $\mathbf{A}(\overline{\mathbf{r}})$ and $V(\overline{\mathbf{r}})$ are in many ways analogous.

For example, we know that we can determine a static field $\mathbf{E}(\bar{\mathbf{r}})$ created by sources $\rho_{\nu}(\bar{r})$ either **directly** (from Coulomb's Law), or indirectly by first finding potential $V(\bar{r})$ and then taking its derivative (i.e., $\mathbf{E}(\overline{r}) = -\nabla V(\overline{r})$).

Likewise, the magnetostatic equations above say that we can determine a static field $B(\overline{r})$ created by sources $J(\overline{r})$ either directly, or indirectly by first finding potential $A(\bar{r})$ and then taking its derivative (i.e., $\nabla \times \mathbf{A}(\overline{\mathbf{r}}) = \mathbf{B}(\overline{\mathbf{r}})$).

 $\begin{array}{ccc} \rho_{\nu}(\bar{r}) & \Rightarrow & \mathcal{V}(\bar{r}) & \Rightarrow & \mathsf{E}(\bar{r}) \\ & & & & \\ \mathbf{J}(\bar{r}) & \Rightarrow & \mathbf{A}(\bar{r}) & \Rightarrow & \mathsf{B}(\bar{r}) \end{array}$